Composite Safety Meeting and Workshop [CAANZ, Wellington, New Zealand]

MHI composite technology - Status and Future -

Toshio Abe

2016 3 2

MITSUBISHI HEAVY INDUSTRIES, LTD.
Fixed Wing Aircraft Engineering Department, Integrated Defense & Space Systems
Achievement and Challenge – MHI Composite Application History

【MHI Composite Application History and Achievement】
Since early 1980’s, Started Composite application in aircraft structure. Aggressive development activities led by Japan’s self-defense force has borne much fruit, such as co-cured wing-box in F-2 Support Fighter. Turning into 21st Century, composite application has been spread out into commercial airplane. MHI has been contributing to develop / produce wing-box on Boeing 787 and now making composite empennage on next coming MRJ.

◆ Achievement
To realize co-cured and co-bonded composite structure

◆ Challenge = Low Cost Volume Production

Cost Contributor
* Material / Fabrication Process - Too expensive compared to Metal
* Parts Fabrication - Bunch of elaboration compared to Metal counterparts
* Assembly - Bunch of Fasteners needed
Today — Composite Structure Production

- Parts Fabrication & Assembly are two major cost drivers, even though all processes hold high cost issues.
- High Cost & Low Produce-ability compared to Metallic structure.

<Material>
Too Expensive

<Assembly>
- Hole Prep. Fastening, EME Protection
 - Weight Up
 - High Cost

<Sub Assy>
- Skin-Stringer Panel
- Shim Operation due to poor geometry
- Time & Cost Issue
 - Measure
 - Shim Prep.
- High Cost

<Parts>
- Gigantic Jigs for realizing geometrical accuracy
- Complicated Fabrication
- High Cost

<Shimming>
- Crack Delam. Prevention Feature
 - Hole Prep.
 - Fastening
- High Cost
- Strength Down

Cost Distribution
- Material Cost
- Energy
- Bunch of Bolts

Inside of the Tank
Sealant Coverage

MHI Proprietary

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
Old Days ~2000

「Hand Craft Products」
◆ Hand Lay-up

Today 2003~ After Boeing787

「Industrial Products」
◆ Automated Lay-Down

SKIN

Ref : G. Hasko, An Introduction to Aerospace Composite Manufacturing Technology

Ref : http://www.compositesworld.com/

Stringer and other Skeletal Parts

● In-efficient and Low Produce-ability

Lay-down up to more than 100plies

Hot Drape Forming

Multi-Parts Assemble & Co-cure

Vacuuming

Even in similar geometrical Parts, Needed parts-by-parts procedures.

Half Day Curing

At last, One parts finished !!

Curing

Demolding

Machine & Finish

Part

出典: 三菱重工技報 Vol.51 No.4 (2014)
Cost Contributor – Parts Fabrication

Compared to Metal counterparts, **Bunch of elaboration = Cost** Needed in Today’s Composite Fabrication.

Stringer and other Skeletal Parts
- In-efficient and Low Produce-ability
 - Lay-down up to more than 100plies
- Even in similar geometrical Parts, Needed parts-by-parts procedures.

Metal Stringer Fabrication (Example)
- Standard Parts & Finishing
 - Extrusion (Ex.)
 - Standard Parts
 - Rolled & Tapped Forming
 - Part
 - Machine Finish
 - Finish !

© 2015 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
Composite application on aircraft have become popular.

But need pursue more aggressive cost target for meeting fierce market challenge.

Thus, future target on composite is

To realize head-to-head competitive production cost against traditional metallic structure

- **Material** DOWN
- **Parts Fabrication** DOWN
- **Assembly** DOWN
- **Less Usage** DOWN

Dramatically Cost Down!!

<< Opportunity >>

- Innovation on Parts Fabrication
- To realize Bonded Structure
How to achieve the Goal – Innovation on Parts Fab.

◆ Standardization

Today
Every single part has unique geometry.
Thus, Need independent fabrication tool / process even in very similar parts.

Quality Concerns, such as fiber wrinkles, due to aggressive contour, joggle … Long process time is also concern.

Future
Standardization needed for realizing Metal-equivalent fabrication cost.
Drape-ability suited for contour and joggle.
To realize short process time

Candidate Technology

Textile and Thermo-Plastic

Textile & CFRTP

CFRTP = Carbon Fiber Reinforced Thermo-Plastic

Future Aircraft
How to achieve the Goal – Bonded Structure

◆ To realize Bonded Structure

Today
Panel-level unified structure realized utilizing co-cure / co-bond technology.
Still, Need far trek toward realizing bonded construction due to less-reliable process
and lack in prevalent quality assurance procedures.

Future
To realize Bonded Structure and fully utilize composite advantage w/less Fastener counts.

Expected Technology ◆ Stable Bond w/Robust Process
◆ Quality Assurance for Weak/Kissing Bond

◆ Strength Degradation due to Hole Prep.

To eliminate / decrease Fastener counts using bonded technology
How to achieve the Goal – Bonded Structure

Bunch of parameters affects Quality and Strength on Bonded Joints

Assembly & Curing Process

- Time
- Parts Gap
- Pressure
- Curing Temperature
- Trapped Air
- Multiple Cure Cycles

Bond Strength
- Toughness & Failure Mode
- Shear & Flat-wise Strength

Void / Porosity

Wettability
- Adhesive Thickness

Surface preparation on Composite
- Surface Energy
- Contamination
- Pre-Bond Humidity
- Surface Roughness
- Adhesive Thickness

Parts Gap
- Time
- Pressure
- Curing Temperature
- Trapped Air
- Multiple Cure Cycles

MHI Proprietary
How to achieve the Goal – Bonded Structure

Process Parameters
- Contamination
- Humidity
- Pressure
- Temperature
- Surface Preparation
- Exposure Time after Surface Prep.
- etc.

Clarification of the Missing Link

Process

Chemical/Physical State of Bond Surface

Bonding Process to Enable Chemical Cross-link

Minimizing Variability by Process Automation

Statistics Based Strength Prediction from Process Record

Certification on Bonded Structure

Crack/Delam. Propagation Prevention Feature

Proof Test

Non-Destructive Inspection Method for Weak & Kissing Bond

Several Routs leading to the goal, or Certification.
⇒ Discuss & Find the Solution for future Aircraft !!

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
Thank you for your attention!

Our Technologies, Your Tomorrow