

Certification of Aircraft Seating Design Changes

2017 Design Delegation Holders' Seminar

Andrea Wadsworth Airworthiness Engineer

May 2017

Agenda

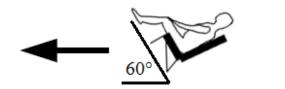
- Quick recap of the regulations
- TSOs vs Airworthiness Requirements
- Use of Guidance Material
- Common Modifications, Considerations

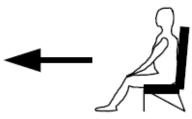
Quick Recap

• Dynamic performance standards started with GA aircraft in 1983

"Please regulate me"

- Study of:
 - Accident data
 - Analytical methods
 - Full-scale aircraft impact tests
 - Aircraft seat dynamic tests
 - Existing pass/fail performance criteria
- Relate crash event to aircraft occupant response




Resulting Standards

Two required tests:

Test 1

Test 2

Combined Vertical/Longitudinal

Spinal loads and injuries

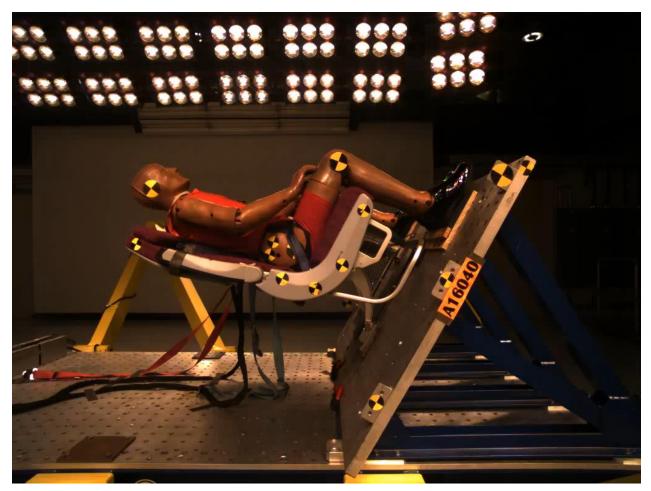
Longitudinal

Structural performance

Occupant restraint system

Dynamic Test Requirements	Part 23	Part 25	Part 27	Part 29
<u>Test 1</u>		-	60°	
Velocity	31	35	30	30
Seat Yaw Angle	0	0	0	0
Peak Decel (Gs)	19/15	14	30	30
Floor Deformation	-	-	10° Pitch 10° Roll	10° Pitch 10° Roll

Dynamic Test Requirements	Part 23	Part 25	Part 27	Part 29
<u>Test 2</u>		-		
Velocity	42	44	42	42
Seat Yaw Angle	10	10	10	10
Peak Decel (Gs)	26/21	16	18.4	18.4
Floor Deformation	10° Pitch 10° Roll	10° Pitch 10° Roll	10° Pitch 10° Roll	10° Pitch 10° Roll



Dynamic Test Requirements	Part 23	Part 25	Part 27	Part 29
<u>Quantitative</u> <u>Compliance</u> <u>Criteria</u>				
Max HIC	1000	1000	1000	1000
Lumbar Load (lb)	1500	1500	1500	1500
Strap Load (lb)	1750/2000	1750/2000	1750/2000	1750/2000
Fomur Load (½)	-	22500	-	-

Resulting Standards

Potential benefits of energy absorbing seats for occupants of survivable accidents: Prevention of Fatalities 2%

Prevention and Reduction of Serious Neck and Back Injuries 38%

TSOs vs Airworthiness Requirements

TSO C22 series – safety belts

TSO C39 series – "static" seats

TSO C72 series – individual flotation devices

TSO C127 series – "dynamic" seats

TSO vs Airworthiness Requirements

- TSOs set out a defined Minimum Performance Standard (MPS)
- TSO ≠ Installation approval
- Further substantiation required to install TSO seats onto aircraft
- TSO MPS may not be equal to the Part 2X airworthiness requirements

TSO vs Airworthiness Requirements

Examples:

TSO C127a –

- HIC and femur loading values to be reported, compliance not required
- 25.785 injurious objects and head strikes
- 25.813 emergency exit access
- 25.815 width of aisle

Use of Guidance Material

- AC 25-17A Crashworthiness Handbook
- AC 27-1B, 29-2C Certification of rotorcraft
- AC 23.562-1, 25.562-1B Dynamic Seating
- AC 23-2A, 25.853-1 Flammability

Plus various policy statements, memos, orders, etc.

AC 25.562-1B

"Family" of seats

- Group of assemblies built from equivalent components in primary load path
- Intent to permit simplified test article selection
- Baseline testing may substantiate majority of seat P/Ns for compliance with FAR 25.562

AC 25.562-1B

"Family" of seats

- Defined based on design characteristics
- Most highly stressed configuration selected for dynamic tests
- Additional tests may be required to substantiate variations beyond basic family principles

AC 25.562-1B

Appendix 3

- Primary seat assembly components and how they can vary within a family
- Appropriate means of substantiation for each element (acceptable by analysis or test)
- Procedures depend on rigorous definition of the "family"; only valid if we adhere to that definition

AC 25.562-1B

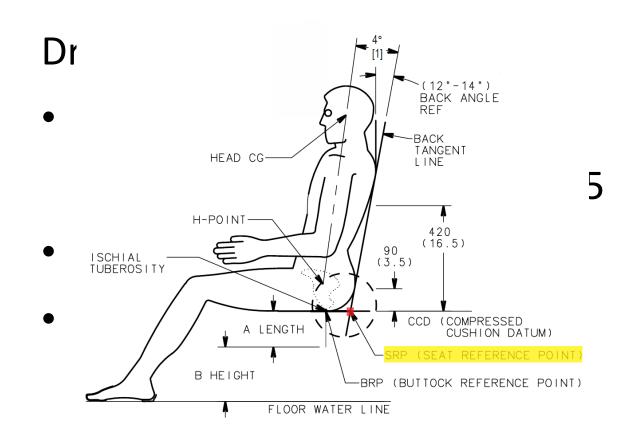
Appendix 3

- Very useful when it comes to modifying seats that are compliant with FAR 25.562
- Lots of detail given
- If you're going to use AC **use it in its entirety**

Common Modifications & Considerations

"Dynamic" seats are tested and pass as a **<u>SYSTEM</u>**:

- Structure (legs, cross tubes, etc.)
- Seat track fittings
- Energy absorbers, stroking mechanisms
- Cushions & upholstery
- Restraints & anchors



Common Modifications & Considerations

Anytime one (or more) of these aspects is modified, <u>compliance to the dynamic 2X.562</u> <u>requirements MAY be affected</u>

Common Modifications & Considerations

Common Modifications & Considerations

Cushions:

- Flammability
- Invalidate dynamic testing?
 - Still same "family"?
 - Seat Reference Point (SRP)?
 - Restraint response?

CAA Guidance and Expectations

Letter dated 15 September 2016

- Great deal of discussion with FAA
- Attempt to simplify and provide practical guidance for common modifications

CAA Guidance and Expectations

- In general, approach given in FAA AC 25.562-1B acceptable for use with other parts (eg. FAR 23, 27, 29)
- Change in SRP confirmed by measurement
 - Change cannot be assumed
 - method to be appropriate to the design change

CAA Guidance and Expectations

Further Clarifications to be added:

- When using AC guidance, OEM configuration is always the baseline
- Clarification by FAA CSTA Crash Dynamics re: AC 25.562-1B - Appendix 3, Bottom Cushion

CAA Guidance and Expectations

AC 25.562-1B - Appendix 3, Bottom Cushion

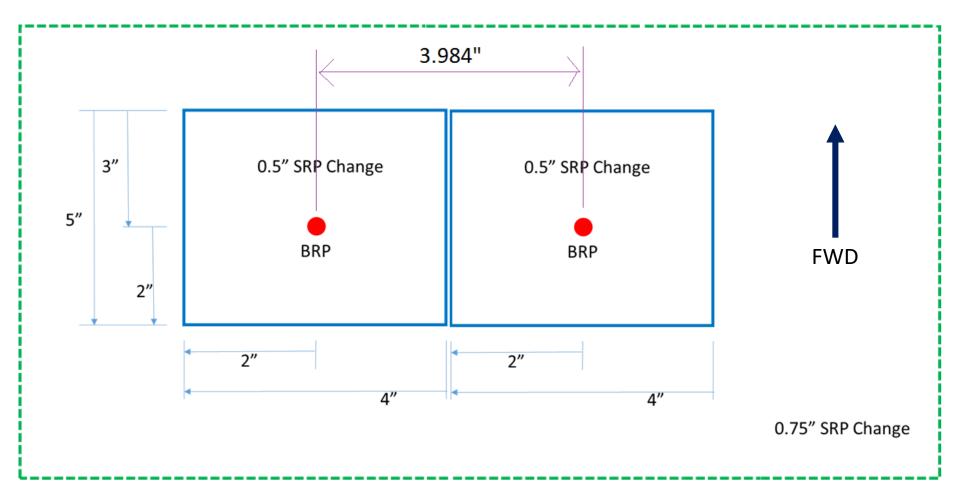
<u>9.b. changes acceptable by analysis:</u>
Contour variations are acceptable without additional 16g and 14g structural
tests, provided the SRP does not vary by
more than <u>0.75 inch in any direction</u>

CAA Guidance and Expectations

AC 25.56 Geometr each but influence Areas of area) hav performa

m Cushion rea around e the most

zone (green


CAA Guidance and Expectations

AC 25.562-1B - Appendix 3, Bottom Cushion

9.c.1. Any variation in the cushion contour within the blue box of the previously tested cushion that results in a vertical change to the SRP of greater than <u>½ inch would</u> require a 14g vertical lumbar load test.

CAA Guidance and Expectations

In Summary

Seats are not as straight forward as they seem...

"BFM"

Lots to consider and keep in mind

Questions?

