Compass use

Objective

To turn accurately onto and maintain compass headings, compensating for known errors in the magnetic compass.

Considerations

Variation

- Difference between true North and magnetic North
- Bar magnet will align itself with lines of flux

Deviation

- Aircraft magnet acted on by things other than the lines of flux, ie, metal objects, aircraft, etc
- Compensated for by a compass swing - done by an engineer

Dip

- At magnetic equator flux lines are parallel with surface
- As they approach the poles they dip down towards the earth's surface
- A bar magnet tries to align with the lines of flux dip towards the earth's surface
- To compensate, the bar magnet is set on a pivot, but some residual dip remains

The pivot arrangement is fairly unstable, so compass card and magnets are immersed in fluid that damps out oscillations - also providing lubrication

Acceleration errors

SAND

- Apparent turn South when Accelerating apparent turn North when Decelerating

Turning errors

ONUS

- To compensate must Overturn on North and Underturn on South
- Use rate one turn, maximum error on N or $S=30^{\circ}$

Air exercise

- Demonstration of acceleration and deceleration errors
- Demonstration of turning errors

Making a turn

- Check present heading against desired heading - use shortest arc
- Decide on amount of overturn or underturn - ONUS
- Lookout and roll in using rate one turn - balance
- Anticipate roll out
- Select reference point
- Level wings - hold for compass to settle
- Check heading and make correction if required (3° per second)

Airmanship

- Compass checked during taxi for correct sense and runway heading
- Turn coordinator checked for serviceability
- Lookout

Aeroplane management

- Compass system checked for serviceability before flight
- Deviation card is valid
- Keep metal items as far away from the compass as possible
- Suction gauge should be checked during engine run-up (4.5-5.2 inches)

Human factors

- Helpful to have a 3D picture of compass in your head
- In-flight mental calculations should be kept to a minimum
- Cover failed instruments to avoid confusion

