

Quantifying the effects of climate change on aircraft take-off performance at European airports

2025 NZ Aviation Meteorology Symposium, February 2025

Jonny Williams¹, Paul D. Williams¹, Federica Guerrini², Marco Venturini²

1 Department of Meteorology, University of Reading, UK

2 Amigo Climate, Via Flaminia 48, I-00196 Rome, Italy

Motivation

British Airways kicks 20 passengers off flight because heat wave made plane too heavy

By Guy Birchall · The Sun

Published July 29, 2018 12:30pm EDT | Updated July 29, 2018 12:37pm EDT

AEROPLANE project

1. Quantify the impact of contrails on cirrus clouds and deepen the understanding of aviation non-CO2 effects on climate;

2. Identify the most relevant climate metrics to assess and predict the aggregated impact of CO2 and non-CO2 emissions on climate change;

3. Quantify the impact of climate change on aviation focusing on the impact of higher temperatures on aircraft performance during take-off

4. Create user-centric, innovative services for a greener and more climate-resilient aviation

https://www.sesarju.eu/projects/AEROPLANE

Q

Take-off performance study areas

- 1. Take-off distance required TODR.
- 2. Maximum take-off mass MTOM.
- 3. Noise pollution. This work is underway and will not be discussed further here.

Take-off distance calculation

- Python
- Jupyter notebooks
- openAP (<u>www.openap.dev</u>)
- Seaborn (<u>https://seaborn.pydata.org/</u>)
- Airbus A320
- Model adapted from Gratton et al., 2020, appendix 2.

Study sites

Runway lengths

• The maximum runway length for a fully laden Airbus A320 in the figure below was calculated using the international standard atmosphere.

Climate model results

 All climate model is freely available to download from the Earth System grid Federation (ESGF).

Model	Description
ACCESS-ESM1-5	CSIRO Commonwealth Scientific and Industrial Research Organisation, Australia
CMCC-ESM2	CMCC Centro EuroMediterraneo sui Cambiamenti Climatici, Italy
CNRM-ESM2-1	CNRM Centre National de Recherches Météorologiques and CERFACS Centre Eu-
	ropéen de Recherche et de Formation Avancée en Calcul Scientifique, France
CanESM5	CCCMa Canadian Centre for Climate Modelling and Analysis, Canada
EC-Earth3	EC-Earth Consortium Europe
GFDL-ESM4	NOAA-GFDL National Oceanic and Atmospheric Administration, Geophysical Fluid
	Dynamics Laboratory, USA
IPSL-CM6A-LR	IPSL Institut PierreSimon Laplace, France
MPI-ESM1-2-LR	MPI-M Max Planck Institute for Meteorology, Germany
NorESM2-LM	NCC NorESM Climate Modelling Consortium, Norway
UKESM1-0-LL	MOHC Met Office Hadley Centre, UK

Schematic for Global Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

- Example model data for Heathrow airport and the UKESM1-0-LL model.
- All data shown in the remainder of this
 presentation is for (northern hemisphere!) summer, JJA.

Definition of time periods used

Historical and projected TODRs

Mean values are increase by approximately 50m but the range of values is large, almost 200m in some cases.

Distributions of TODR and daily maximum temperature

 The increase in the median value
 temperature is

 to a large
 extent –
 reflected in the
 increases in the
 TODR values.

• Note also however that the shapes of the distributions change significantly with warming, reflecting the changes to the distribution in, for example, extreme hot days in the future.

What about the air pressure?

- Although the changes to air temperature are often what we tend to personally 'notice' on a given day, it is the air *density* which goes into the calculation.
- For a given temperature, variations in air pressure can account for changes of up to 50m in TODR.

0

EGKK JJA

0

С

14

- The 99th percentile represents extreme high TODR values which occur (by definition) 1 day out of a 100, or 1% of the time.
- For some airports, average values of up 50% are projected over the 30-year future periods considered.
- In other words, days with exceptional, 1/100-day conditions historically, may occur up to <u>half the time</u> in the future.
- This is likely to have significant impacts on runway maintenance procedures and will necessitate weight restrictions at airports with short runways.

% days > P { 99_{hist}}.

Maximum take-off mass, MTOM

 For airports with short runways, additional – compared to historical values – values of weight restrictions of up to ≈10 passengers equivalent per flight may need to be enforced in the future.

Probability distributions of MTOM

• This shows the probability distribution function of individual days' MTOM values, relative to the average historical value at each site.

- The distribution changes shape significantly with large increases in the number of extreme hot days
- 2. Extreme values of passenger equivalent weight reductions may exceed 20 passengers per flight by 2065.

Open-access paper published today!

aerospace	
Submit to this Journal	
Review for this Journal	
Propose a Special Issue	
Article Menu	
Academic Editor	
Michael Schultz	
Subscribe SciFeed	
mmended Articles	

K

Order Article Reprints

1

This is an early access version, the complete PDF, HTML, and XML versions will be available soon.

Open Access Article

Quantifying the Effects of Climate Change on Aircraft Take-Off Performance at European Airports

by Jonny Williams ^{1,*} 🖂 ^(D), Paul D. Williams ¹, Federica Guerrini ² ^(D) and Marco Venturini ² ^(D)

¹ Department of Meteorology, University of Reading, Reading RG6 6ET, UK

² Amigo s.r.l., 00196 Rome, Italy

* Author to whom correspondence should be addressed.

Aerospace 2025, 12(3), 165; https://doi.org/10.3390/aerospace12030165 (registering DOI)

Submission received: 19 December 2024 / Revised: 24 January 2025 / Accepted: 18 February 2025 / Published: 20 February 2025

(This article belongs to the Section Air Traffic and Transportation)

Download 🗸

Review Reports

Versions Notes

Conclusions

- We have used a take-off performance model to calculate summer take-off distance required for the Airbus A320 for:
 - 30 European airports.
 - 3 possible future emissions scenarios.
 - 10 state-of-the-art climate models.
- Due to climate change, the magnitude and distribution of take-off distance required is projected to change significantly, even for comparatively small future warming, and although variability is large, extreme values may be up to ~100m larger in the future.
- Climatic conditions necessitating extreme (99th percentile) runway utilisation are expected to occur as much as half the time in the future.
- Many airports have runways which are more than long enough to cope with this, but at least 4 of our study sites may have to reduce payloads by as much as much as ≈10 passengers per flight by 2065 compared to historical values.

Acknowledgements

- The European Union and SESAR Joint Undertaking for funding.
- Collaborators within the AEROPLANE project at AMIGO Climate, Deep Blue, EUROCONTROL and Reading & Leipzig Universities.
- Helpful discussions with colleagues at several of our study sites.
- You all for your attention and invitation to speak today.